

学部講議 「電力工学基礎」

2004年4月14日(水)

演習問題 No.1

	学生番号	_ 氏名		
			by Miyatake with pI	$AT_{ m E}X$ $2arepsilon$
につ	の説明文について、正しいものには○、間違っているもの いては、間違っていると思われる個所に下線を引き、でき: のについては、穴を埋めよ。			
(1)	電力と電力量は、単位が似ているが、しっかり区別すべき	である。		
(2)	」エネルギー密度が 8400 [kcal/ℓ] のガソリンは、単位を変打	換すると約	9.8 [Wh/ℓ] となる。	

(3)	エネルキー密度が 100 [Wh/kg] で、	密度が 1.2	$[kg/\ell]$ のリチワ	フムイオン電池は、	上と単位を	を捌える
	と約 120 [Wh/ℓ] となる。				r	

	L	
(4) 図1のように、コンデンサを並列と直列にしたものを考える。コンデンサ1個の静電容量に	$\sharp C$	耐圧(最
大電圧)は V とする。並列にしたときの静電容量は 、最大貯蔵エネルギー 1 (は	
である。また、直列にしたときの静電容量は、最大貯蔵エネルギーは		である。
したがって、並列と直列のいずれの場合も合計の最大貯蔵エネルギーは変わらない。		

(5) 図 2 のように、容量 <i>C</i> の と電源は並列に接続され、 初から直列にして十分な時	スイッチ S ₁ を開い	て S_2 を閉じると電源	は直列に接続される。	電源を最
エネルギーはそれぞれ	,	である。また、最初	Jに電源を並列にして十	一分時間が
経ったあとで電源を直列に	して十分な時間充電	」 した場合、電源から供] 「	給されたエネルギーと	:コンデン
サにたまったエネルギーは	それぞれ	, である	。 したがって、電源電	証圧をどう
制御しても効率は 50%で変	 ごわらない。			

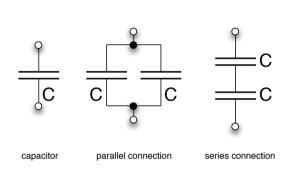


図 1: コンデンサの直並列接続

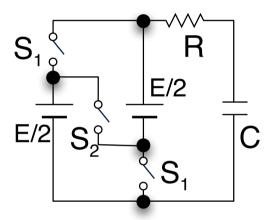


図 2: **コンデンサの充電**