

電力工学基礎 補足資料 ~ 5/11 講義 板書の訂正と補足 ~

2005.5.11 宮武

1 各変数の関係

1.1 単相の場合

$$V_m = \sqrt{2}V, I_m = \sqrt{2}I$$

1.2 3相の場合

$$V_m = \sqrt{2}V_0, V = \sqrt{3}V_0, I_m = \sqrt{2}I$$

2 板書での間違い

単相では、 $V_m=\sqrt{2}V$ である所を、 $V_m=\frac{1}{\sqrt{2}}V$ と勘違いをしたのが間違いの原因である。同様に、 3 相では $V_m=\sqrt{2}V_0$ が正しく $V_m=\frac{1}{\sqrt{2}}V_0$ ではない。電流も $I_m=\sqrt{2}I$ が正しく $I_m=\frac{1}{\sqrt{2}}I$ ではない。(電流は単相・ 3 相とも同じ)

いずれの場合も、最初の時間関数の定義が間違っているだけで、得られる結論には間違いはない。また、 配布資料にも間違いはない 1 。

2.1 単相交流の訂正箇所

$$v(t) = \underbrace{\sqrt{2V\sin\omega t}}_{\text{\ensuremath{\mathfrak{g}}}\xspace i.e.} (= V_m\sin\omega t) \quad i(t) = \underbrace{\sqrt{2I\sin(\omega t - \theta)}}_{\text{\ensuremath{\mathfrak{g}}}\xspace i.e.} (= I_m\sin\omega t)$$

2.2 3相交流の訂正箇所

$$v_a(t) = \underbrace{\sqrt{2}V_0\sin\omega t}_{\mbox{\it \#IIE}} = \sqrt{\frac{2}{3}}V\sin\omega t \ (=V_m\sin\omega t) \quad i_a(t) = \underbrace{\sqrt{2}I\sin(\omega t - \theta)}_{\mbox{\it \#IIE}} \ (=I_m\sin\omega t)$$

 v_b, v_c, i_b, i_c も同様

¹配布資料では振幅 (ピーク値) を用いて議論している