A Numerical Algorithm for Run-curve Optimization of Trains Considering DC Feeding Circuit

Hideyoshi Ko and Masafumi Miyatake

Department of Electrical and Electronics Engineering, Sophia University, Japan
Background

- Energy-saving operation in DC railway system
 - Considering feeding characteristics and interaction among several trains is essential.
 - The system has many difficult characteristics to analyze.
 - Practical discussion of optimal train operation control has just started.
Background

- Our development of optimization techniques
 - A single train using Dynamic Programming
 - COMPRAIL 2004 by H. Ko
 - A single train with energy storage using Sequential Quadratic Programming (SQP)
 - COMPRAIL 2006 by K. Matsuda (already finished)
 - Several trains using Gradient Method
 - COMPRAIL 2006 (this presentation)

\[\text{energy} \rightarrow \min. \]

\[
T = \text{const.} \\
\int_0^T vdt = \int_0^T \int_0^T adt dt = \text{const.}
\]
Proposal of an optimization algorithm of train speed profile for practical use considering

a. Feeding circuit

b. Several trains

c. Characteristics of a train that depend on feeding voltage

 ex: Acceleration/deceleration ability, squeezing control of regenerating current and feeding loss
Mathematical formulation

Mathematical formulation is given as an optimal control problem.

- Total energy consumption at substations \rightarrow Objective functional
- Kinetic equations of trains \rightarrow State equations
- Circuit equations \rightarrow equality constraints
- Torque limitations (and speed limitations) \rightarrow inequality constraints
Definition of control input u

$$-1 \leq u \leq 1$$

$$f = \begin{cases}
uf_{\text{max}}(u > 0) \\
uf_{\text{min}}(u < 0)
\end{cases}$$
Numerical algorithms

<table>
<thead>
<tr>
<th></th>
<th>Algorithm I</th>
<th>Algorithm II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplicity</td>
<td>Worse</td>
<td>Better</td>
</tr>
<tr>
<td>Theoretical strictness</td>
<td>Better</td>
<td>Worse</td>
</tr>
<tr>
<td>Numerical stability</td>
<td>Worse</td>
<td>Better</td>
</tr>
<tr>
<td>Applicability to large systems</td>
<td>Worse</td>
<td>Better</td>
</tr>
</tbody>
</table>
Numerical algorithms

algorithm I

Numerical algorithms

algorithm II
Dividing the objective functional for each trains

total energy consumption

\[J = \int_0^T \sum_{m=1}^{M} E_m(t) I_m(t) \, dt \rightarrow \min \]

\[= \sum_{j=1}^{N} U_j \rightarrow \min \]

\[T : \text{total operating time} \]
\[M : \text{number of substations} \]
\[N : \text{number of trains} \]
\[E_m : \text{voltage of } m\text{-th substation} \]
\[I_m : \text{current of } m\text{-th substation} \]
\[U_j : \text{objective function of } j\text{-th train} \]

which mainly consists of \(j\text{-th train’s energy consumption and feeding loss} \)

\(J \) is devided into subsets using Kirchhoff’s Current Law for distributed algorithm.
Parameters for optimizing examples

- Method: algorithm II
- PC spec: Intel Celeron 1.4GHz, 512MB
- Number of trains: 2
- Supply voltage of substations $E_s = 1500$ [V]
- Internal resistance of substations $R_s = 0.05$ [Ω]
- Line resistance $R_l = 0.04$ [mΩ/m]
Train movements and position of substations
Characteristics of train

(a) acceleration/deceleration

(b) squeezing control
Optimization results (Case A)

(a) $t_S=90\,[\text{s}]$

(b) $t_S=130\,[\text{s}]$

(c) $t_S=220\,[\text{s}]$

Speed [m/sec]

Control input

large regenerating current
Optimization results (Case B)

65[s] 130[s] 195[s]

small regenerating current
Optimization results (Case C)

40[s] 130[s] 170[s]

much small regenerating current
Energy consumption

Phase between two trains much affects energy consumption.

<table>
<thead>
<tr>
<th>Case</th>
<th>Energy Consumption [MJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>244.1</td>
</tr>
<tr>
<td>B</td>
<td>280.4</td>
</tr>
<tr>
<td>C</td>
<td>329.1</td>
</tr>
</tbody>
</table>

26%
Summary

- The optimal operating problem of multiple trains considering DC feeding system is formulated.
- The simplified approximated numerical algorithm is performed.
- The proposed method has enough performance from numerical examples.
 - The optimal results are obtained within 1 minute.