

# 1. Introduction 2. Optimization Model for Energy-saving Train Scheduling Law of Identical Incremental Energy Consumption Generalized Mathematical Model 3. Numerical Study for Demonstration 4. Conclusion



## Objectives Framework combining energy-saving driving and scheduling by means of optimization for commuter trains with few additional cost and disutility of passengers easy implementation Eco-driving already presented at COMPRAIL'04, 'o6 & '08 Eco-scheduling newly presented at COMPRAIL'12





#### Energy-saving (Eco) Train Scheduling

- Total trip time *Ts* is given as a constant.
- Runtime for *i*-th interstation T<sub>i</sub> is a variable.
  by adjusting slack time
- The minimal energy consumption is solved by varying the *T<sub>i</sub>*.











## 3. Numerical Study for Demonstration

### A Numerical Study

a short round-trip commuting line with short interstations





| Assumed Cases                                                                                                                                                                                                                                                                                                                            |       |           |                |       |       |                |                  |                |                       |          |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|----------------|-------|-------|----------------|------------------|----------------|-----------------------|----------|----------------|
| Cases                                                                                                                                                                                                                                                                                                                                    | $T_1$ | $T_2$     | $T_3$          | $T_4$ | $T_5$ | $T_6$          | $T_7$            | $T_8$          | <i>T</i> <sub>9</sub> | $T_{10}$ | ]              |
|                                                                                                                                                                                                                                                                                                                                          | [s]   | [s]       | $[\mathbf{s}]$ | [s]   | [s]   | $[\mathbf{s}]$ | $[\mathbf{s}]$   | $[\mathbf{s}]$ | [s]                   | [s]      |                |
| regular                                                                                                                                                                                                                                                                                                                                  | 65    | 75        | 75             | 65    | 75    | 75             | 65               | 75             | 75                    | 65       | ]              |
| 1                                                                                                                                                                                                                                                                                                                                        | 0     | 5         | <b>5</b>       | 5     | 5     | 0              | 5                | 5              | 5                     | 5        | ]              |
| $\begin{array}{ c c c c } & \text{ without optimization} \\ & \text{with optimization subject to simple constraints} \\ & \hline & \hline & \hline & \hline & \hline & T_{1,4,7,10}[\mathbf{s}] & T_{2,3,5,6,8,9}[\mathbf{s}] & \sum^{10} T_i[\mathbf{s}] & \sum^{2} T_i[\mathbf{s}] & \sum^{10} T_i[\mathbf{s}] \\ \end{array} \right.$ |       |           |                |       |       |                |                  |                |                       |          |                |
| 2                                                                                                                                                                                                                                                                                                                                        | 65    | ~75       |                | 75~85 |       | 1=             | 1 = 1<br>720~750 |                |                       |          |                |
| 3                                                                                                                                                                                                                                                                                                                                        | 65    | $\sim 75$ | 75~8           |       | 85    | 72             | $720 \sim 750$   |                | $140 \sim 145$        |          | $140 \sim 145$ |
| with optimization subject to complicated constraints<br>to types of solving: nonlinear(NLP) and linearized(LP) optimization                                                                                                                                                                                                              |       |           |                |       |       |                |                  |                |                       |          |                |



| Energy Consumption               |                    |                 |                           |        |  |  |  |  |  |
|----------------------------------|--------------------|-----------------|---------------------------|--------|--|--|--|--|--|
|                                  | total energy [kWh] |                 |                           |        |  |  |  |  |  |
|                                  | without regen      | erative braking | with regenerative braking |        |  |  |  |  |  |
| cases                            | NLP                | LP              | NLP                       | LP     |  |  |  |  |  |
| 1                                | 27                 | 5.21            | 165.44                    |        |  |  |  |  |  |
| 2                                | 268.29             | 268.31          | 161.69                    | 161.70 |  |  |  |  |  |
| 3                                | 269.72             | 269.77          | 162.45                    | 162.48 |  |  |  |  |  |
| regular time                     | 35                 | 5.60            | 209.86                    |        |  |  |  |  |  |
| very few impact of linearization |                    |                 |                           |        |  |  |  |  |  |

## 4. Conclusion

## Conclusion

- Energy-saving train scheduling by adjusting slack times
  - based on a mathematical model
  - very few influence of linearization and regenerative ability on generated slack times
- Future scope
  - optimization considering easiness of recovering from delay and utility of passenger as well as energy consumption