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i Background

= Energy-saving operation in DC railway
system

= Considering feeding characteristics and
Interaction among several trains is essential.

= The system has many difficult characteristics
to analyze.

= Practical discussion of optimal train operation
control has just started.



Background

= Our development of optimization techniques

= A single train using Dynamic Programming
= COMPRAIL 2004 by H. Ko

= A single train with energy storage using Sequential
Quadratic Programming (SQP)
= COMPRAIL 2006 by K. Matsuda (already finished)

= Several trains using Gradient Method
« COMPRAIL 2006 (this presentation)
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i Outline

Proposal of an optimization algorithm of train
speed profile for practical use considering

a. Feeding circuit
b. Several trains

c. Characteristics of a train that depend on
feeding voltage

ex : Acceleration/deceleration ability, squeezing
control of regenerating current and feeding
loss



i Mathematical formulation

Mathematical formulation is given as an optimal
control problem.

= Total energy consumption at substations -
Objective functional

= Kinetic equations of trains - State equations
= Circuit equations - equality constraints

= torque limitations (and speed limitations) -
Inequality constraints
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Numerical algorithms
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Numerical algorithms
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Dividing the objective
functional for each trains

total energy consumption T : total operating time

M : number of substations

J Z E (t)l (t)dt — min N : number of trains

m=1 E,, : voltage of m-th substation
N |, : current of m-th substation
Z U; — min U; : objective function of j-th train

=1 which mainly consists of j-th train’s

energy consumption and feeding
loss

J Is devided into subsets using Kirchhoff’s
Current Law for distributed algorithm.



Parameters for optimizing
i examples

= Method : algorithm Il

= PC spec : Intel Celeron 1.4GHz, 512MB

= Number of trains : 2

= supply voltage of substations E.=1500[V]

= Internal resistance of substations R.=0.05[€2]
= line resistance R=0.04[m¢/m]




Train movements and position

i of substations
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Characteristics of train
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‘L Optimization results (Case A)
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‘L Optimization results (Case B)
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i Optimization results (Case C)
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i Energy consumption

energy 4 329.1
consumption 5

[MJ]

Phase between two
trains much affects
energy consumption.




i Summary

= The optimal operating problem of multiple
trains considering DC feeding system s
formulated.

= The simplified approximated numerical
algorithm Is performed.

= The proposed method has enough
performance from numerical examples.

= The optimal results are obtained within 1
minute
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