A Numerical Algorithm for **Run-curve Optimization of Trains Considering DC Feeding** Circuit Hideyoshi Ko and Masafumi Miyatake

Department of Electrical and Electronics Engineering, Sophia University, Japan

Background

- Energy-saving operation in DC railway system
 - Considering feeding characteristics and interaction among several trains is essential.
 - The system has many difficult characteristics to analyze.
 - Practical discussion of optimal train operation control has just started.

Background

Our development of optimization techniques

- A single train using Dynamic Programming
 - COMPRAIL 2004 by H. Ko
- A single train with energy storage using Sequential Quadratic Programming (SQP)
 - COMPRAIL 2006 by K. Matsuda (already finished)
- Several trains using Gradient Method
 - COMPRAIL 2006 (this presentation)

Outline

Proposal of an optimization algorithm of train speed profile for practical use considering

- a. Feeding circuit
- b. Several trains
- c. Characteristics of a train that depend on feeding voltage
 - *ex* : Acceleration/deceleration ability, squeezing control of regenerating current and feeding loss

Mathematical formulation

Mathematical formulation is given as an optimal control problem.

- Total energy consumption at substations → Objective functional
- Kinetic equations of trains \rightarrow State equations
- Circuit equations \rightarrow equality constraints
- torque limitations (and speed limitations) → inequality constraints

Numerical algorithms

	Algorithm I	Algorithm II
Simplicity	Worse	Better
Theoretical strictness	Better	Worse
Numerical stability	Worse	Better
Applicability to large systems	Worse	Better

Dividing the objective functional for each trains

total energy consumption

$$J = \int_0^T \sum_{m=1}^M E_m(t) I_m(t) dt \to \min_{H \to H} I_H$$

$$=\sum_{j=1}^{N} U_{j} \to \min$$

T : total operating time

M : number of substations

 $\min N$: number of trains

 E_m : voltage of *m*-th substation

 I_m : current of *m*-th substation

 U_j : objective function of *j*-th train which mainly consists of *j*-th train's energy consumption and feeding loss

J is devided into subsets using Kirchhoff's Current Law for distributed algorithm.

Parameters for optimizing examples

- Method : algorithm II
- PC spec : Intel Celeron 1.4GHz, 512MB
- Number of trains : 2
- supply voltage of substations $E_s = 1500$ [V]
- internal resistance of substations $R_s = 0.05[\Omega]$
- line resistance $R_l = 0.04 [m\Omega/m]$

Train movements and position of substations

Characteristics of train

Optimization results (Case A)

Optimization results (Case B)

Optimization results (Case C)

- The optimal operating problem of multiple trains considering DC feeding system is formulated.
- The simplified approximated numerical algorithm is performed.
- The proposed method has enough performance from numerical examples.
 - The optimal results are obtained within 1 minute