

CHARGE/DISCHARGE CONTROL OF A TRAIN WITH ON-BOARD ENERGY STORAGE DEVICES FOR ENERGY MINIMIZATION AND CONSIDERATION OF CATENARY FREE OPERATION

15.09.2008M. Miyatake, K. Matsuda and H. HagaSophia University, Japan

INTRODUCTION

Background

- * Application of energy storage devices to railway
 * It enables effective use of regenerative energy.
 * Some attempts for energy storage on-board can be seen. Catenary free operation is also demonstrated.
 - * Relation between the use of energy storage devices and energy consumption has not been theoretically discussed enough.

Objective

- * Proposal of solving energy-saving train operation control problem, considering
 - * practical circuit configuration,
 - * power feeder from substations
 - * energy storage devices
 - * practical track profile and train schedule,
 - * theoretical optimality.

Contents

- Introduction
- Modeling
 - circuit modeling
 - numerical optimization
- Results of simulations
 - catenary EDLC hybrid
 - catenary free mode
- Conclusion

MATHEMATICAL MODELING

Modeling of a Train

EDLC

 V_{S_1}

Substation2

Chopper

Train

motor/(

 V_S inverter

Substation1

DC power feeder

Process of calculation Catenary Free Mode

Mathematical programming

* The problem can be solved by nonlinear programming techniques with discretization.

- * Hybrid mode
- * Sequential Quadratic Programming (SQP).^[8]
- * Catenary free mode
 - * Dynamic Programming.^[11]

RESULTS OF SIMULATIONS CATENARY - EDLC HYBRID

RESULTS OF SIMULATIONS CATENARY FREE MODE

CONCLUSIONS

Summary

* EDLC should increase supply power as the voltage drops when the train speed is low.

- * Deep discharge may cause larger energy loss, if the train has much margin time.
- * The optimal distribution of times should be discussed, especially in catenary free mode.

Future scope

* Application of the method to
* other hybrid power sources,
* quick charging for catenary free operation.
* Realization of on-line control.