Control Characteristics of a Fibonacci-Search-based Maximum Power Point Tracker When a Photovoltaic Array Is Partially Shaded

Masafumi Miyatake, Takeshi Inada, Isao Hiratsuka, Hongyan Zhao, Hisayo Otsuka, Motomu Nakano

Department of Electrical and Electronics Engineering, Sophia University Kioi-cho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan

E-mail : miyatake@power.ee.sophia.ac.jp URL : http://power.ee.sophia.ac.jp/

Introduction

General Background • Needs for photovoltaic (PV) power

- - reduction of CO_2 emission
 - distributed power generation
- Features of PV power generation
 - dependent on weather
 - change of the operating point generating maximum power
- → Maximum Power Point Tracker (MPPT)

Partial Shadow Effect

- Partially shaded PV array
 - with series connection of PV modules
 - two or more maximum power points
 - difficulty in finding the global maximum power point

Objectives

- Simple and fast algorithm
 - small amount of calculation
 - intuitive parameter tuning
- Reliable algorithm
 - able to find the global maximum power point
- Applicable to any type of power conditioners
 - independent of the circuit configuration
 - \rightarrow Various applications are expected.

Fundamentals of the MPPT

Approach

- Using simple optimization methods
 - $\boldsymbol{\cdot}$ no need for differential operation
 - $\boldsymbol{\cdot}$ no need for assumption of function itself
- → Difficult to use some methods applying Maximum Principle
- Two types of optimization techniques
 - \cdot one dimensional line search algorithms
 - very simple
 - Fibonacci search algorithm
 - (golden section search algorithm)
 - introducing meta-heuristics
 - · easy to find global maximum point
 - Particle Swarm Optimization (PSO)

Improvement of the **Proposed MPPT**

Results of the Experiments

