

046 Emergent Train Scheduling under Restricted Electrical Energy with Considering Trade-off between Energy Consumption and Trip Time M. Miyatake Sophia University, Tokyo, Japan 25th March, RailTokyo2015

М ≈ ₩ 7 7

Sophia --- Bringing the World Together

Background

- Uncertain power supply in Japan by
 - East Japan Earthquake Disaster
 - Accident of the Fukushima Nuclear Power Station
- Influence on train operation
 - 15% reduction of energy
 - reduced number of trains
 - lack of robustness
- Need of countermeasures
 - studying them in advance

Energy Savings in Train Operation

Eco-driving

 optimization of train
 speed profiles for each
 interstation

 Eco-scheduling

 optimization of distribution of slack times for every interstations

Objectives

- comparing some countermeasures of train timetabling against such power shortage quantitatively
 - by macroscopic simulation
- evaluation of schedule by
 - energy saving
 - passenger disutility
 - (peak power shaving)
 - need of microscopic simulation

Four Major Countermeasures

strategy o: reduced number of cars per train

strategy 2: reduced number of stops

strategy 3: slow down

Qualitative evaluation

	strategy 0	strategy 1	strategy 2	strategy 3
	reduced number of cars per train	curtailed train service	reduced number of stops	slow down
peak power	very good	fair	fair	fair
energy	very good	good	very good	very good
car scheduling	bad	good	very good	fair
crew scheduling	very good	good	very good	fair
transport capacity	fair	fair	very good	good
passenger utility	good	bad	fair	fair
easiness of passen- ger guidance	good	good	bad	good
robustness against train delay	good	good	good	fair

Energy-saving (Eco) Train Scheduling

- Total trip time T_S is given as a constant.
- Runtime for *i*-th interstation *T_i* is a variable.
 - by adjusting slack time
- The minimal energy consumption is solved by varying the T_i .

Formulation with Nonlinear Programming

Applying Lagrange multiplier technique

$$L(T_1, \cdots, T_N, \lambda) = \sum_{i=1}^N W_i(T_i) + \lambda \left(\sum_{i=1}^N T_i - T_S\right)$$
$$\frac{\partial L}{\partial T_i} = \frac{\partial L}{\partial \lambda} = 0 \quad (i = 1, 2, \cdots, N)$$

Derived Law

 $\frac{\partial W_1}{\partial T_1} = \frac{\partial W_2}{\partial T_2}$ $\frac{\partial W_N}{\partial T_N} = -\lambda$

Law of Identical Incremental Energy Consumption

If incremental energy for all interstations are identical, the schedule is optimal.

Passenger Trip Times

- giving number of passengers for each Origin-Destination (OD) pair
- evaluating the following items
 - waiting time at a station assuming uniform passenger arrival
 - running time between O and D
 - (transfer time)
- sum of total times for all passengers

Assumed Conditions

with/without Skips

Optimized Runtimes

Comparative Results

curtailed trains S1-1: 1/12 curtailed S1-2: 2/12 curtailed S1-3: 3/12 curtailed

reduced stops **S2-1**: 2/12 passing B **S2-2**: 4/12 passing B **S2-3**: 6/12 passing B

slow down **S3-1**: round trip+20[s] **S3-2**: round trip+40[s] **S3-3**: round trip+60[s]

Discussion

- Trade-off between energy consumption and trip times can be found.
- Curtailed train service (Strategy 1) had much higher increase of trip times than other strategies.
- Reduced train stops (Strategy 2) and slow down (Strategy 3) had very similar characteristics.

Summary

- Emergent scheduling under restricted energy supply
 - some countermeasures compared
 - energy consumption
 - passenger trip times
 - "reduced number of stops" and "slow down" preferable
- Future scope
 - considering peak power, etc.

Thanks for your kind attention!

http://miyatake.main.jp