

046 Emergent Train Scheduling under Restricted Electrical Energy
with Considering Trade-off between Energy Consumption and Trip Time
M. Miyatake

Sophia University, Tokyo, Japan

$25^{\text {th }}$ March, RailTokyo2015

III

$\equiv \mathrm{BH}$ 'r
Sophia - - Bringing the World Together

1. Introduction

2. Countermeasures against Power Shortage 3. Optimization of Train Timetables
3. Simulation, a Case Study
4. Conclusion

Background

- Uncertain power supply in Japan by
- East Japan Earthquake Disaster
- Accident of the Fukushima Nuclear Power Station
- Influence on train operation
- 15\% reduction of energy
- reduced number of trains
- lack of robustness
- Need of countermeasures
- studying them in advance

Energy Savings in Train

Operation

regular time
flat-out time
-Eco-driving -optimization of train speed profiles for each interstation

- Eco-scheduling - optimization of distribution of slack times for every interstations

Objectives

- comparing some countermeasures of train timetabling against such power shortage quantitatively
- by macroscopic simulation
- evaluation of schedule by
- energy saving
- passenger disutility
- (peak power shaving)
- need of microscopic simulation

1. Introduction

2. Countermeasures against Power Shortage 3. Optimization of Train Timetables
3. Simulation, a Case Study
4. Conclusion

Four Major

Countermeasures

strategy 0: reduced number of cars per train

strategy 1: curtailed train service

strategy 2: reduced number of stops

strategy 3: slow down

Qualitative evaluation

	strategy 0	strategy 1	strategy 2	strategy 3
	reduced number of cars per train	curtailed train service	reduced number of stops	slow down
peak power	very good	fair	fair	fair
energy	very good	good	very good	very good
car scheduling	bad	good	very good	fair
crew scheduling	very good	good	very good	fair
transport capacity	fair	fair	very good	good
passenger utility	good	bad	fair	fair
easiness of passen- ger guidance	good	good	bad	good
robustness against train delay	good	good	good	fair

1. Introduction

2. Countermeasures against Power Shortage
3. Optimization of Train Timetables
4. Simulation, a Case Study
5. Conclusion

Energy-saving (Eco) Train Scheduling

- Total trip time T_{S} is given as a constant.
- Runtime for i-th interstation T_{i} is a variable.
- by adjusting slack time
- The minimal energy consumption is solved by varying the T_{i}.

Formulation with Nonlinear Programming

$$
\begin{aligned}
& \underset{\sim}{\left(T_{1}, \cdots, T_{N}\right)} \\
& \text { total energy }
\end{aligned} \quad=\quad \sum_{i=1}^{N} W_{i}\left(T_{i}\right) \rightarrow \min
$$

consumption

$$
\text { subject to } \quad \sum_{i=1}^{N} T_{i}=T_{S}
$$

Applying Lagrange multiplier technique

$$
\begin{aligned}
L\left(T_{1}, \cdots, T_{N}, \lambda\right) & =\sum_{i=1}^{N} W_{i}\left(T_{i}\right)+\lambda\left(\sum_{i=1}^{N} T_{i}-T_{S}\right) \\
\frac{\partial L}{\partial T_{i}}=\frac{\partial L}{\partial \lambda} & =0 \quad(i=1,2, \cdots, N)
\end{aligned}
$$

Derived Law

$$
\frac{\partial W_{1}}{\partial T_{1}}=\frac{\partial W_{2}}{\partial T_{2}}=\cdots=\frac{\partial W_{N}}{\partial T_{N}}=-\lambda
$$

Law of Identical Incremental Energy Consumption

If incremental energy for all interstations are identical, the schedule is optimal.

Passenger Trip Times

- giving number of passengers for each Origin-Destination (OD) pair
- evaluating the following items
- waiting time at a station assuming uniform passenger arrival
- running time between O and D
- (transfer time)
- sum of total times for all passengers

1. Introduction

2. Countermeasures against Power Shortage
3. Optimization of Train Timetables
4. Simulation, a Case Study
5. Conclusion

Assumed Conditions

with/without Skips

Optimized Runtimes

Comparative Results

curtailed trains
S1-1: 1/12 curtailed
S1-2: 2/12 curtailed
S1-3: 3/12 curtailed
reduced stops
S2-1: 2/12 passing B
S2-2: 4/12 passing B
S2-3: 6/12 passing B
slow down
S3-1: round trip+20[s]
S3-2: round trip +40 [s]
S3-3: round trip+6o[s]

Discussion

- Trade-off between energy consumption and trip times can be found.
- Curtailed train service (Strategy l) had much higher increase of trip times than other strategies.
- Reduced train stops (Strategy 2) and slow down (Strategy 3) had very similar characteristics.

1. Introduction

2. Countermeasures against Power Shortage
3. Optimization of Train Timetables
4. Simulation, a Case Study
5. Conclusion

Summary

- Emergent scheduling under restricted energy supply
- some countermeasures compared
- energy consumption
- passenger trip times
- "reduced number of stops" and "slow down" preferable
- Future scope
- considering peak power, etc.

Thanks for your kind attention!

http://miyatake.main.jp

